Prediksi Semester Tugas Akhir Mahasiswa Berdasarkan Transkrip Nilai Menggunakan Linear Regression, Kernel Ridge Regression dan Decision Tree Regression

  • Eki Ahmad Zaki Hamidi UIN Sunan Gunung Djati Bandung
  • Edi Mulyana
  • Dilla Restu Agusthiani
  • Aldi Fahruzi Muharam

Abstract

This study aims to predict the semester in which students complete their final thesis using transcript data and three regression algorithms: Linear Regression, Kernel Ridge Regression, and Decision Tree Regression. The research evaluates the performance of each model using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation metrics. The experimental results show that Kernel Ridge Regression outperforms the other two models with an MSE of 2.271 and an MAE of 1.251. In comparison, Linear Regression achieved an MSE of 5.137 and an MAE of 1.859, while Decision Tree Regression produced an MSE of 4.1 and an MAE of 1.2. These findings indicate that Kernel Ridge Regression is the most effective method for predicting the completion semester based on academic transcripts, providing more accurate and reliable results. The study contributes to the academic field by demonstrating the potential of machine learning models in predicting students' academic progress and supporting better decision-making for academic management.

References

[1] L. Delnoij et al., “Predicting Completion: The Road to Informed Study Decisions in Higher Online Education,” Front. Educ., vol. 6, no. July, pp. 1–17, 2021, doi: 10.3389/feduc.2021.668922.
[2] R. Bakri, N. P. Astuti, and A. S. Ahmar, “Machine Learning Algorithms with Parameter Tuning to Predict Students’ Graduation-on-time: A Case Study in Higher Education,” J. Appl. Sci. Eng. Technol. Educ., vol. 4, no. 2, pp. 259–265, 2022, doi: 10.35877/454ri.asci1581.
[3] A. B. Hassanat et al., “A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric,” Mathematics, vol. 12, no. 22, pp. 1–20, 2024, doi: 10.3390/math12223623.
[4] S. M. Robeson and C. J. Willmott, “Decomposition of the mean absolute error (MAE) into systematic and unsystematic components,” PLoS One, vol. 18, no. 2 February, pp. 1–8, 2023, doi: 10.1371/journal.pone.0279774.
[5] M. N. Faruqhy, D. Andreswari, and J. P. Sari, “Prediksi Prestasi Nilai Akademik Mahasiswa Berdasarkan Jalur Masuk Perguruan Tinggi Menggunakan Metode Multiple Linear Regression (Studi Kasus: Fakultas Teknik Universitas Bengkulu),” Rekursif J. Inform., vol. 9, no. 2, pp. 172–183, 2021, doi: 10.33369/rekursif.v9i2.17108.
[6] A. Qoiriah and Y. Yamasari, “Prediksi Nilai Akhir Mahasiswa Dengan Metode Regresi (Studi Kasus Mata Kuliah Pemrograman Dasar),” J. Inf. Eng. Educ. Technol., vol. 5, no. 1, pp. 40–43, 2021, doi: 10.26740/jieet.v5n1.p40-43.
[7] A. Thabibi and R. Supriyanto, “Perbandingan Model Multiple Linear Regression Dan Decision Tree Regression (Studi Kasus: Prediksi Harga Saham Telkom, Indosat, Dan Xl),” J. Ilm. Teknol. dan Rekayasa, vol. 28, no. 1, pp. 78–92, 2023, doi: 10.35760/tr.2023.v28i1.6081.
[8] W. J. M. Putra, “Analisa Algoritma Regresi Linear dan Decision Tree Dalam Prediksi Penjualan Produk ( Studi Kasus : Lookma Boutique ),” Skripsi, p. 31, 2022, [Online]. Available: https://lib.mercubuana.ac.id/
[9] N. Roustaei, “Application and interpretation of linear-regression analysis,” Med. Hypothesis, Discov. Innov. Ophthalmol., vol. 13, no. 3, pp. 151–159, 2024, doi: 10.51329/mehdiophthal1506.
[10] D. Mustofani, H. Hariyani, A. Afif, D. I. Oktaviasari, and B. Y. Ariadhita, “Analisis Data Hubungan Antar Variabel Pada Pengetahuan Swamedikasi,” Unisda J. Math. Comput. Sci., vol. 10, no. 1, pp. 12–17, 2024, doi: 10.52166/ujmc.v10i1.6701.
[11] A. A. Masrur Ahmed, E. Sharma, S. Janifer Jabin Jui, R. C. Deo, T. Nguyen-Huy, and M. Ali, “Kernel Ridge Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors,” Remote Sens., vol. 14, no. 5, 2022, doi: 10.3390/rs14051136.
[12] Putri R.A, Winahju W.S, and Mashuri Muhammad, “Penerapan Metode Ridge Regression danSupport Vector Regression (SVR) untukPrediksi Indeks Batubara di PT XYZ,” J. Sains Dan Seni Its, vol. 9, no. 1, pp. 64–71, 2020.
[13] B. B. Acharya and G. D. Shaileshbhai, “Comparative Analysis of Machine Learning Algorithms : KNN , SVM , Decision Tree and Logistic,” no. November, 2024.
[14] I. Septian et al., “Decision Tree Regression untuk Prediksi Prevalensi Stunting di Provinsi Nusa Tenggara Timur,” vol. 10, no. 2, pp. 413–427, 2024.
[15] I. Azure, “Predictive modeling for industrial productivity: Evaluating linear regression and decision tree regressor approaches,” J. AppliedMath, vol. 2, no. 4, p. 1435, 2024, doi: 10.59400/jam.v2i4.1435.
Published
2025-02-07