Design and Development of the Drive System on GPR (Ground Penetrating Radar)
Abstract
Ground Penetrating Radar (GPR) has become an essential tool in mapping and imaging subsurface features. However, to enhance precision and control in GPR usage, a GPR drive system utilizes stepper motor technology. The study focuses on the importance of precise control over GPR movement to improve scanning accuracy and image quality. By integrating stepper motors into the drive system, the research endeavors to enhance the precision, reliability, and efficiency of GPR in subsurface scanning. Through detailed design steps, the implementation of stepper motors aims to structurally and measurably control GPR movement. The design and construction of the GPR drive system using stepper motors aim to enhance precision and control in subsurface scanning. Through detailed design steps, the implementation of stepper motors aims to structurally and measurably control GPR movement. The design and construction of the GPR drive system using stepper motors aim to enhance precision and control in subsurface scanning. The integration of GUI and Arduino IDE in stepper motor control has proven effective, providing consistent and accurate control. Performance analysis indicates that stepper motors with A3967 drivers exhibit high accuracy, particularly in movements ranging from 0.5 to 2 cm, with insignificant errors. Stepper motors also demonstrate consistency across various speeds, while the direct relationship between pulse duration and duty cycle influences speed and position control with precision. Thus, the utilization of stepper motors in the GPR drive system improves precision, control, and image quality in subsurface scanning , supporting GPR applications in fields such as geology, archeology, and construction.
Keywords : GPR, XY Coordinates, Stepper Motor, Automated drive system, Arduino IDE, and Scanning Precision
References
[2] A. S. Bahri, Supriyanto, dan B. J. Sentosa, “Penentuan Karakteristik Dinding Gua Seropan Gunung kidul Dengan Metode Ground Penetrating Radar,” Prodi Geofisika, FMIPA, Institut Teknologi Sepuluh Nopember, Surabaya, 2010.
[3] D. J. Daniel, Ground Penetrating Radar. IEEE Radar Series, London, 2004.
[4] I. K. Dewi, K. Mashendra, S. Putri, dan Y. Maulindra, “Identifikasi Litologi pada Lahan Gambut dengan Penerapan Metode Ground Penetrating Radar di Desa Jati Mulyo,” Seminar Nasional Lahan Suboptimal, vol. 10, no. 1, pp. 166-177, Jan. 2023.
[5] D. J. Daniel, Surface Penetrating Radar. London: The Institution of Electrical Engineers, 1996.
[6] J. Ersuo et al., “On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II,” Carbohydrate Polymers, vol. 143, pp. 327–335, 2016.
[7] E. Elfarabi, A. Widodo, dan F. Syaifudin, “Pemetaan Bawah Permukaan Pada Daerah Tanggulangin, Sidoarjo Dengan Menggunakan Metoda Ground Penetrating Radar (GPR),” Jurnal Geosaintek, vol. 3, no. 1, pp. 45-50, 2017.
[8] M. Grasmueck, R. J. Weger, dan H. Horstmeyer, “Full-resolution 3D GPR imaging,” Geophysics, vol. 70, no. 1, pp. K12–K19, 2005.
[9] Handson, “CNC Shield V3 for Arduino UNO - Stepper Motor Controller.” [Online]. Available: http://qqtrading.com.my/cnc-shield-v3-stepper-motor-controller-a4988. [Diakses: 8 Juli 2019].
[10] V. S. Heteren, D. M. Fitzgerald, P. A. McKinlay, dan I. V. Buynevich, “Radar Facies of Paraglacial Barrier System, Coastal New England, USA,” Sedimentology, 1998.
[11] Y. Iswati, “Analisis Core dan Defleksi LOS Untuk Mengetahui Lingkungan Pengendapan dan Menentukan Cadangan Batubara di Banko Barat Pit 1, Sumatera Selatan,” Skripsi, Universitas Lampung, 2012.
[12] R. Knight, “Ground Penetrating Radar for Environment Application,” Annual Review of Earth and Planetary Sciences, vol. 29, pp. 229-255, 2001.
[13] R. P. Koesoemadinata, “Teriary Coal Basin of Indonesia,” United Nation ESCAP, CCOP Technical Bulletin, Bandung, 1978.
[14] F. Oktafiani, S. Sulistyaningsih, dan Y. N. Wijayanto, “Sistem Ground Penetrating Radar Untuk Mendeteksi Benda-benda Di Bawah Permukaan Tanah,” Jurnal Teknik Elektro, vol. 1, no. 2, pp. 53–57, 2010.
[15] M. A. Saputra, H. Wijanto, dan Y. Wahyu, “Antena vivaldi antipodal sirkular ultra wide-band (UWB) untuk radar tembus tembok,” Prosiding Semnastek, 2018.






