Perancangan dan Realisasi Sistem Kendali Furnace Menggunakan Ratio Control Berbasis Distributed Control System Centum VP R05.04.20

  • Asep Najmurrokhman Universitas Jenderal Achmad Yani
  • Listi Restu Triani
Kata Kunci: distributed control system, PID, ratio control, sistem kendali furnace

Abstrak

Dalam industri pengolahan minyak dan gas, sistem kendali yang andal sangat penting untuk menjamin efisiensi energi dan keselamatan operasi. Salah satu elemen krusial adalah pengendalian rasio udara-bahan bakar (air-to-fuel ratio) dalam proses pembakaran pada furnace. Penelitian ini bertujuan untuk merancang dan merealisasikan sistem kendali furnace menggunakan strategi ratio control berbasis Distributed Control System (DCS) Centum VP R5.04.20 dari Yokogawa. Sistem dirancang untuk mengatur laju aliran massa udara dan bahan bakar secara presisi agar diperoleh efisiensi pembakaran optimal serta emisi minimal. Pengendalian dilakukan melalui konfigurasi PID di dalam DCS, dengan parameter tuning yang dioptimalkan untuk mencapai kestabilan proses. Hasil implementasi menunjukkan bahwa sistem mampu bekerja dalam kondisi stabil pada ratio gain sebesar 2,5, serta dengan parameter PID masing-masing pengendali, yaitu FIC102 (P=100, I=10, D=0) dan PIC201 (P=180, I=60, D=0). Sistem ini berhasil meningkatkan respons kendali dan efisiensi operasi furnace, sekaligus memberikan dasar bagi penerapan kontrol otomatisasi yang lebih canggih di masa depan.

Referensi

[1] V. H. Khisty, “SCADA Systems in Oil and Gas : Driving Innovation and Efficiency in the Digital Age,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 8, pp. 96–107, 2024.
[2] L. Zhang and J. Wang, “Intelligent safe operation and maintenance of oil and gas production systems : Connotations and key technologies,” Nat. Gas Ind. B, vol. 10, no. 3, pp. 293–303, 2023, doi: 10.1016/j.ngib.2023.05.006.
[3] A. S. Allahloh, M. Sarfraz, A. M. Ghaleb, and S. Mejjaouli, “IIoT-Based Intelligent Process Control for Crude Oil Separation : Investigating the Impact of Model-Based Control and Genetic Algorithms,” J. Sensors, vol. 2023, no. 1909835, pp. 1–20, 2023, doi: 10.1155/2023/1909835.
[4] A. U. Mentsiev and I. A. Mutaev, “Automation and control of thermal processes in the furnace,” in IOP Conf. Series: Materials Science and Engineering 734, 2020, p. 012212, doi: 10.1088/1757-899X/734/1/012212.
[5] S. Skogestad, “Ratio control : Theoretical basis and practical implementation,” 2025. [Online]. Available: https://skoge.folk.ntnu.no/publications/2025/skogestad-ratio-control/Ratio_control (8).pdf.
[6] E. T. A. B. A. Alobaidi and O. A. Alqahtani, “Feed forward and Ratio control,” Int. J. Eng. Res. Appl., vol. 12, no. 11, pp. 95–99, 2022, doi: 10.9790/9622-12119599.
[7] L. S. Paraschiv, A. Serban, and S. Paraschiv, “Calculation of combustion air required for burning solid fuels ( coal / biomass / solid waste ) and analysis of flue gas composition,” Energy Reports, vol. 6, pp. 36–45, 2020, doi: 10.1016/j.egyr.2019.10.016.
[8] M. Tkácik, J. Jadlovsky, S. Jadlovska, A. Jadlovska, and T. Tkácik, “Modeling and Analysis of Distributed Control Systems : Proposal of a Methodology,” Processes, vol. 12, no. 5, pp. 1–20, 2024, doi: https://doi.org/10.3390/pr12010005.
[9] -------, “OpreX Control – Distributed Control System (DCS).” https://www.yokogawa.com/id/solutions/products-and-services/control/control-and-safety-system/distributed-control-systems-dcs/.
[10] V. Athappan, M. Saravanabalaji, and S. Ranganathan, “Real Time Temperature Process Plant Automation Using Yokogawa DCS Centum VP,” in International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2021, pp. 1–6, doi: 10.1109/ICAECA52838.2021.9675780.
[11] N. Qu and W. You, “Design and fault diagnosis of DCS sintering furnace’s temperature control system for edge computing,” PLoS One, vol. 16, no. 7, p. e0253246, 2021, doi: https://doi.org/10.1371/journal.pone.0253246.
[12] T. Yawisit, “Performance Analysis of Distributed Control System: Implementation and Optimization of Yokogawa Centum-VP,” King Mongkut’s Institute of Technology Ladkrabang, 2025.
[13] M. Tutar et al., “Optimized CFD modelling and validation of radiation section of an industrial top-fired steam methane reforming furnace,” Comput. Chem. Eng., vol. 155, p. 107504, 2021, doi: 10.1016/j.compchemeng.2021.107504.
[14] T. Lee, E. Han, U.-C. Moon, and K. Y. Lee, “Supplementary Control of Air-Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission,” Energies, vol. 13, no. 226, pp. 1–15, 2020.
[15] S. Li and Y. Wang, “Performance Assessment of a Boiler Combustion Process Control System Based on a Data-Driven Approach,” Processes, vol. 6, no. 200, pp. 1–35, 2018, doi: 10.3390/pr6100200.
Diterbitkan
2025-07-03